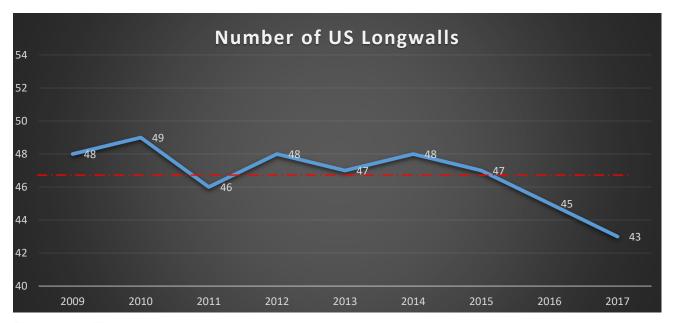
Extending the life of LW Roof Supports through the use of a Life Cycle Testing Management Plan

Allan Black Product Manager Komatsu Mining Corp. Lourens Janse Van Rensburg Engineering Manager New Denmark Mine Jamie Davey Project Manager New Denmark Mine


Introduction

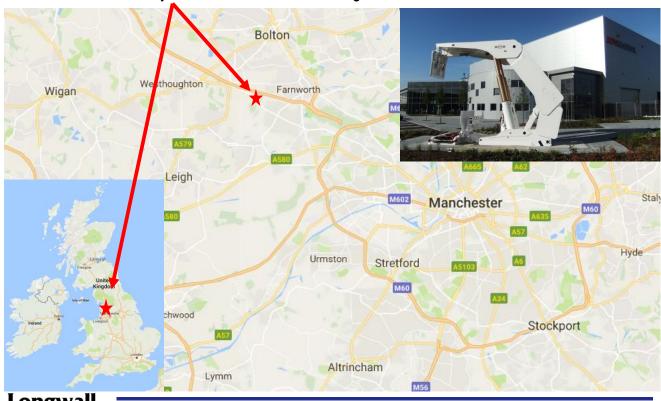
US Longwalls are Reducing

Since 2014 the reduction in the number of LW has accelerated Coal companies are faced with reduced capital expenditure To survive companies need to improve productivity Mines need to extend the life of core assets

A successful Longwall

Managing a successful LW is as much about managing the asset

- The Shearer is about reliability
- The AFC is managing the wear
- The PRS is achieving longevity



Original Equipment Manufacturer's Test Facilities

Our Manchester Facility, in the North-West of the England

Extended Life Testing

Extended life testing is a process used to evaluate the longevity of powered roof support structures, it can also be used as a predictive tool to determine when individual components are likely to reach the end of their serviceable life.

Stages

- · A representative support is taken out of service.
- This is striped and fully evaluated in the UK.
- The results set a base line on the condition of the support though its service to date.
- Load cases to a bespoke test schedule are designated to replicate the actual service seen.
- The support is then tested up to the customers required number of life cycles.
- From the results the customer gets:
- Confidence in the longevity of the supports going forward.
- A recommendation of any essential repairs needed.
- Detailed reports and Life Cycle Management plans.
- Actual test result when components will reach the end of their serviceable life.
- The ability to plan future maintenance budgets with a high level of accuracy.
- The option of upgrades with the latest improvements, features and solutions.

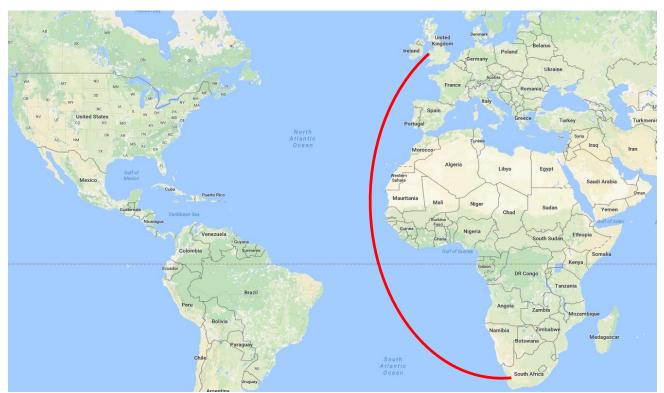
Test Ref.	Canopy Load Case	Base Load Case	No. of Cycles
1	Front Offset (CA3)	Bending (BA 1)	1,000
2	Rear Offset (CA 20)	Bending (BA 1)	1,000
3	Bending (CA 1)	Front Torsion & Bending (BA 10)	1,000
4	Bending (CA 1)	Rear Torsion & Bending (BA 11)	1,000
NUMBER OF CYCLES			
The above sequence to be repeated 7 times – Number of Cycles			
1	Front Offset (CA3)	Bending (BA 1)	1,000
2	Rear Offset (CA 20)	Bending (BA 1)	1,000
TOTAL CYCLES			

		11.	7	6	
1) Combin	ed Roof & Floor Member Te	Sheet 1 of 2		
Test No.	Test Ref.	Canopy	Test Ref.	Base	No. of Cycles
1A	CA 3A	191 + H	BA1	# B	500
18	CA 38	150 + 191 +	BA1	+ 8	500
2A	CA 20A	150 + + + 283 + 283 545	BA1	# # B	500
28	CA 20B	150 545 + 120 203	BA1	150 150 1 + 10	500
3A	CA 1	150 150 + 150 + 150	BA10A	110 150 1 + + 10 1 + + 10	500
38	CA1	150 150 + 150 + 150	BA10B	++2	500

An Overview of the Equipment

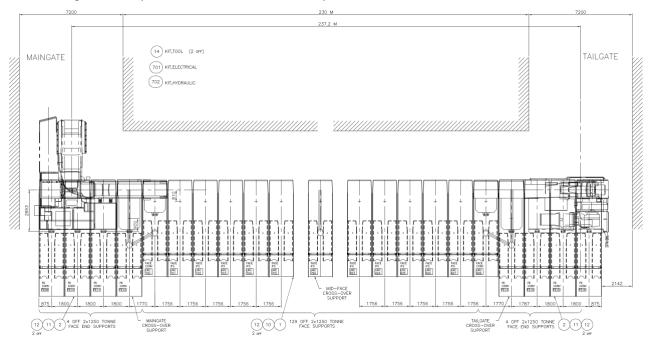
Original Specification

- A 1250 Tonne (1378UST) support
- Supplied in 2009
- 1.75m wide
- 400mm legs, 200mm stab, 150mm D/A ram.
- Open / Closed heights 53" / 98"
- Tested to 30,000 cycles, 100% amplitude



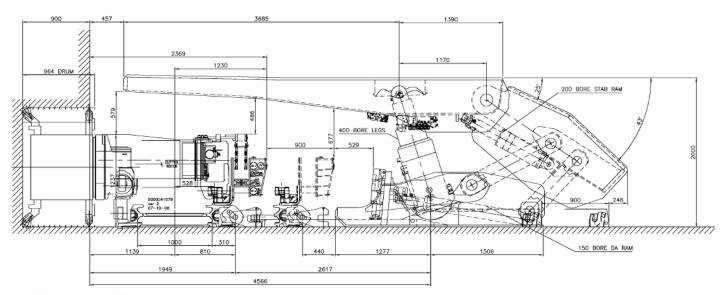
Transport to New Denmark Colliery

The supports were transported some 8,500 miles



Face Layout

- Total of 137 Powered Roof Supports
- Made up of 8 x Gate Ends, and 129 Run of Face Supports
- Mining a 230m (face side rib to face side rib) coal block.


Face Cross Section

Shearer – 7LS2A

Cutter Motor Power	470 kW	
Cutting Height	1,6 to 3,5 Metres	
Tunnel Clearance	0.398 Square Metres	
Haulage Power	80 kW VFD	
Max Haulage Cutting Speed	16 metres per min	
Cutter Drums	Dia 1600 mm, 968mm Width	

AFC

Capacity	2500 Tonnes per Hour	
Maingate Transmission	855 kW, TTT, 1000EP G/Box	
Tailgate Transmission	855 kW, TTT, 1000BP G/Box	
	42 mm Broad Band	
Chain Speed	1.6 Metres per sec	
	1000 mm	
Chain Management	Dynamic Chain Control	

Test Specification in Detail

Not all test specifications are the same.

There can be a minimum regional standard for example:

EN1804 European Union

GOST Russia MA China

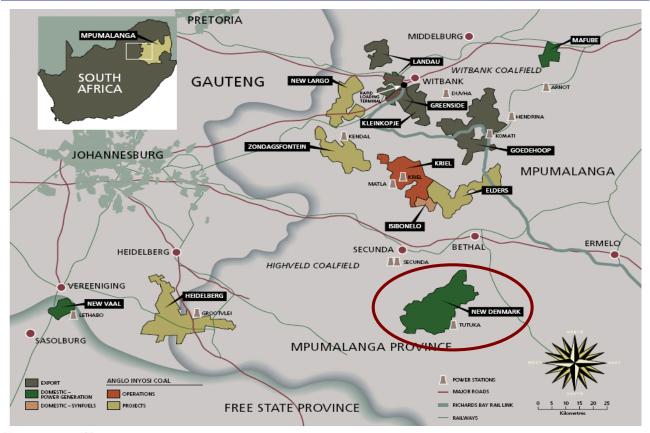
There can also be mining company specific standards in place of, or in addition.

For the New Denmark support the standard required for:

15,000 cycles without test induced cracks, followed by

15,000 cycles with allowable cracks within a strict tolerance

As an indication of how rigorous this test was Comparing the lowest to the highest specification And using a scale of 1 – 10 this would represent a 8



An Overview of New Denmark Colliery

New Denmark Colliery

New Denmark Overview

New Denmark Colliery is an Anglo American U/G Coal Mine Supplying Coal to Eskom's Tutuka Power Station and was Established in 1982

Mining the no 4 Seam at $\,$ an Average Depth Below Surface of \pm 200 m and an Average Seam Height = 1.85m $\,$

Eskom Original Contract:

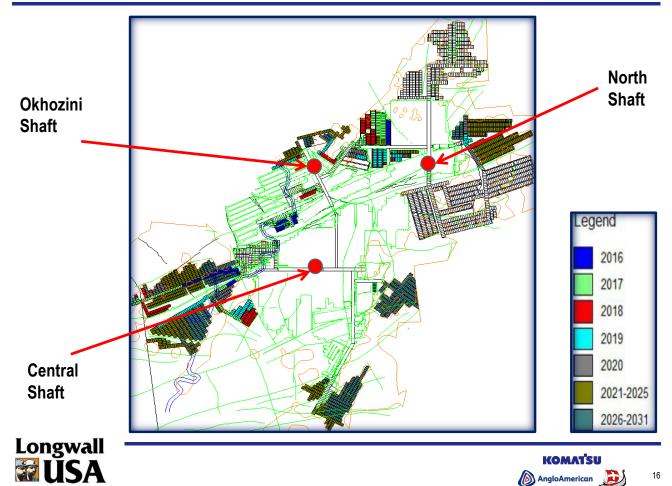
- 10.05 Mt/a Commencing from 1989 Producing 433.5Mt Over the Life of Mine
- Production Output was Based on: 2 x Longwalls, 2 x Shortwalls and 14 Continuous Miner Sections

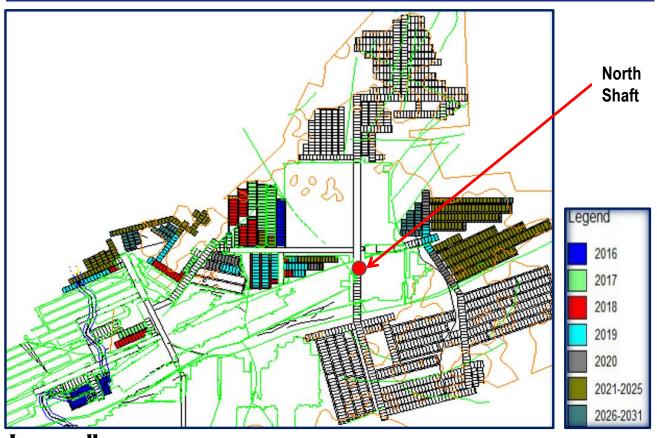
Eskom Subsequent Requirements:

- Reduced to 3.75Mt/a in 2001 by Eskom (North Shaft Mothballed)
- Increase Tonnage from 4.0 4.5 Mt/a in 2006
- 2010 Eskom Extends Power Station Life 60y (2049)

Current:

- 2016 Budget is 3.2Mt. Production Build up From 4.27Mt to 5.0Mt in 2017 and 2018 Respectively.
- The Longwall Stops in 2020 and CM Production will Continue until 2030 at \pm 3Mt/a
- NDC 3 Shafts:
 - Central Shaft 4 CM's (2 X Double Header Sections and 1X Dev Section)
 - Okhozini Shaft 1 CM Section
 - North Shaft 2 CM's & Longwall





New Denmark Mine Orientation

New Denmark North Shaft Orientation

Mine Overview

Mine / Product Characteristics

- Average Seam Height 1.85m
- Average CV 22.8 MJ/kg
- Average Ash 27.6%
- Average AI 649 mgFe

Mining Method

•Bord & Pillar - Continuous Miner Sections

2 x Double Header Sections

New Concept to South Africa: Shosholosa Implemented Aug 2016 Simunye Implemented March 2017

3 x Single Header Sections
 2 x Chain Road, 1 x Multi Road

•Total Extraction - Longwall

The Case Study

The supports were supplied in 2009 and tested up to 30,000 cycles

A requirement was to extend the support's life to 45,000 cycles

The support had seen 13,000 underground cycles

And seen some pretty tough conditions

Preliminary inspection prior to being dismantled

It was dismantled and visually inspected

All cracks & damage identified and assigned unique crack ID marks



The components are then shot blasted and visually inspected with the addition of magnetic particle NDT testing to establish the location of any additional weld cracks

The components are then shot blasted and visually inspected with the addition of magnetic particle NDT testing to establish the location of any additional weld cracks

Hinge pins and bores were also examined, measured and recorded.

As Manufactured

Bore Diameter nominal 141

Pin Diameter nominal 140

Reference for datum

As Measured

Bore Diameter nominal 142

Pin Diameter nominal 138

Wear of 3mm

Based on the results of these inspections, a unique test program was agreed upon that best replicated the load cases the support had seen in actual service.

The test schedule for the roof support was agreed and carried out in 5 phases.

Phase 1: 2000 cycles this gives the supplied roof support a cyclic count of 15,000 cycles

Phase 2 to 5: 7500 cycles per phase (total roof support cyclic count of 45,000)

Note: the support was stripped down after phase 3 and 5 and underwent a full MPI inspection.

Phase 1			Phase 4		
Waste to face lateral test Canopy high offset yield test Canopy low offset yield test	1,000 cycles 500 cycles 500 cycles	(2,000)	Combined roof / floor member tests Waste to face lateral test Canopy high offset yield test Canopy low offset yield test	4,000 cycles 2,500 cycles 500 cycles 500 cycles	(24,500)
Phase 2				ooo cycles	(24,000)
Combined roof / floor member tests	4,000 cycles		Phase 5		
Waste to face lateral test Canopy high offset yield test Canopy low offset yield test	2,500 cycles 500 cycles 500 cycles	(9,500)	Combined roof / floor member tests Waste to face lateral test Canopy high offset yield test	4,000 cycles 2,500 cycles 500 cycles	
Phase 3			Canopy low offset yield test	500 cycles	(32,000)
Combined roof / floor member tests Waste to face lateral test Canopy high offset yield test Canopy low offset yield test	4,000 cycles 2,500 cycles 500 cycles 500 cycles	(17,000)	Total for project	32,000 cycles	

The definition of test failure was agreed as damage that would leave the fabrication in a condition such that it would be unfit for service or economical repair.

This could be either:-

- a) Sudden acceleration of crack propagation rate.
- b) Parent metal failure such that a salvage repair would be inappropriate.
- c) Loss of prime function. I.e. unable to sustain yield loads.

Testing commenced and was progressing very well:

- Phase 1, 2, and 3 where completed successfully
- The strip and NDT testing was conducted with no significant issues to the welds detected
- The testing of the support (phase 4) then recommenced

During phase 4, at 19,000 cycles (a total of 32,000 cycles including these seen underground) there was a catastrophic failure of the lower links, and the test had to be suspended.

The lower links were replaced, and the test resumed successfully completing phase 4, and 5. Deterioration was monitored throughout the extended testing but didn't impact the structural performance and the support achieved the target 45,000 cycles.

From the results of the test, a comprehensive plan was devised. advising on when to carry out proactive replacement of the lower links, as well as any other work required to take the supports to the required 45,000 cycles.

Structure	Component area	Inspection plan (PRS cycles)**	Action		
Rear Shield		No structural deterioration expecte	No structural deterioration expected		
	Leg casting welds (fig 5.1)	0-20,000	No action required		
		20,000	Inspect welds		
Canopy		30,000	Inspect welds		
		40,000	Inspect welds		
	Canopy bottom plate local	0-30,000	No action required		
	apertures (fig 5.2)	30,000	Inspect lifting hole plate area – consult Joy engineering with results		
	Canopy Local top plate dishing				
	to hinge area (fig 5.3)	On-going consistent with panel change	Conduct audit – weld repair as appropriate		
Base	Base skid to outer side walls (fig 5.4)	On-going –consistent with panel change	Conduct audit – weld repair as appropriate		
	Base skid plate to side wall at lower link bore (fig 5.5)	On-going –consistent with panel change	Conduct audit – weld repair as appropriate		
	Vertical rear bridge (fig 5.6)	30,000	Inspect and consult with Joy to discuss extent of repair requirements		
	Upper link base doublers (fig 5.7)	30,000	Area to be monitored		
Bores		30,000	To be repaired when Joint clearances exceed maximum OEM recommendation of 2mm		
Lower Link (LH and RH)	N/A	25,000	Replace link		

Summary

Extended life testing is a process to evaluate if a support can be taken past its original life cycles, with those results feeding into a detailed report or Life Cycle Management plan.

Due to its predictive nature, the life cycle management plan identifies when components are likely to reach the end of their serviceable life and allows maintenance budgets to be developed with greater accuracy, and also phased in over a number of years / face moves.

Importantly this provided operators with options when evaluating equipment going forward with the added confidence in the proven longevity of the supports.

Questions?

