

Longwall USA 2017

Transformation/Repurposing of Face Equipment

About Me

- Name: Jacob Smith
- Education:
 - Bachelor of Science Civil Engineering
 - Master of Science Geotechnical Engineering
- Experience:

- > Over 7 years of engineering experience in the Civil and Mining industries
- Licensed Professional Engineer in the State of Utah
- Employer: Canyon Fuel Company
- Position: Engineering Manger Sufco Mine

About Canyon Fuel Company

- Canyon Fuel Company is a subsidiary of Bowie Resource Partners, LLC.
- Operations:
 - Sufco Mine
 - Skyline Mine
 - Dugout Canyon Mine
 - Fossil Rock Mine (Future)
- Bowie Resource Partners is <u>the</u> largest coal producer in the Uinta Basin

Challenges Facing Our Industry

"Over the past decade, the coal mining industry has faced a series of challenges including competition from other fuel sources, as well as increased regulations"

- Advancing Utah Coal, May 2017

Primary Contributors:

- New Government Regulations
- Market Competition
- Aging Facilities
- Public Perception

Challenges Facing Our Industry

"If somebody wants to build a coal-fired power plant, they can. It's just that it will bankrupt them."

– Barack Obama, 2008

New or Proposed Regulations:

- Mercury and Air Toxics Plan
- Clean Power Plan
- Regional Haze Plan
- Stream Protection Plan
- Coal Lease Moratorium
- New Respirable Dust Standards
- Proximity Detection

Challenges Facing Our Industry

Opening the Door for Market Competition:

- Risk of increase operating costs, due to environmental regulations
- > Aging coal-fired power generation facilities (Average 39 years)
- Increase in natural gas production from domestic shale basins which reduced the price of natural gas

Market Demand

U.S. Energy Generation and Generation Share by Energy Source 2006-2016	U.S. Generation by Share (2006-2016)					
			<u>Natural</u>			<u>Other</u>
	<u>Year</u>	<u>Coal</u>	<u>Gas</u>	<u>Nuclear</u>	<u>Hydro</u>	<u>Renewables</u>
کے 60%	2006	49%	20%	19%	7%	2%
	2007	49%	22%	19%	6%	3%
R 20%	2008	48%	21%	20%	6%	3%
40%	2009	44%	23%	20%	7%	4%
209/	2010	45%	24%	20%	6%	4%
30%	2011	42%	25%	19%	8%	5%
20%	2012	37%	30%	19%	7%	5%
10%	2013	39%	28%	19%	7%	6%
	2014	39%	28%	19%	6%	7%
0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016	2015	33%	33%	20%	6%	7%
Year	2016	30%	34%	20%	7%	8%
Coal Natural Gas Nuclear Hydroelectric Other Renewables	Data source: U.S. Energy Information Administration					

- Since 2006, total US power generation from Coal dropped from 49% to 30%
- The number of operating underground coal mines declined from 862 in 2006 to 470 in 2015, which is a 45% reduction

The Financial Dilemma

Decreasing Market Demand + Increasing Operating Costs = ?

The Ultimate Question: How does an operator *safely* maintain profitability, while meeting all state and federal regulations?

A Solution: By transforming and repurposing existing equipment

Sufco Mine - Background

- Mine Type Underground Coal
- Location Central Utah
- Year Started 1941
- Customers Utilities & Western Industrial
- Mining Method
 - 1 Longwall
 - 3 Continuous Miners
- Annual Production 6 6.5 million tons
- Reserves
 - > Upper Hiawatha Seam
 - Total Tons Produced = Over 190 Million
 - Total Tons Remaining = Over 20 Million
 - Lower Hiawatha Seam
 - Total Tons Remaining = Over 56 Million

Sufco Mine - Challenges

Upper Hiawatha Seam

- Historical Reserve Thickness = 9 17 feet
- Remaining Reserve Thickness = 7 11 feet
- Current Longwall Equipment
 - > (2) Complete Caterpillar 2.0-meter AFC, Crusher, and BSL
 - Face Width = 1,110 feet
 - (168) Caterpillar 2.0-meter Shields
- First Challenge
 - Managing Quality and Out-of-seam Dillution

Dugout Canyon Mine

- Mine Type Underground Coal
- Location Central Utah
- Year Started 1998
- Customers Utilities, Western Industrial, & Export
- Mining Method Continuous Miner
- Annual Production 0.75 1 million tons
- Available Equipment
 - > (157) Joy 1.75-meter Shields
 - Operating Height = 7 11 feet
 - Total Cycles = 30,000
 - No Panline

Sufco Mine – Challenges

Current LW Equipment

- Face Width = 1,110 feet
- Operating Height = 8.5 14 feet
- Pan Width = 1342 mm
- Web Depth = 42 inches

Available LW Equipment

- Face Width = 905 feet
- > Operating Height = 7 11 feet
- Pan Width = 1042 mm
- Web Depth = 36 inches

Difference

- Face Width = 205 feet (18%)
- Operating Height = 1.5 3 feet (21%)
- Pan Width = 300 mm (22%)
- Web Depth = 6 inches (14%)

Second Challenge

Maintaining Current Production

Challenges and Solution

Define the Challenge

- Maintaining Coal Quality
- Maintaining Current Production

Identify the Solution

- Use the Available Joy 1.75-meter shields
 - Increase Web Depth from 36 inches to 1 meter
- Purchase new AFC, BSL, and Crusher
 - Increase pan width from 1042 mm to 1142 mm

Make a Plan

- 1. Perform Shield Evaluation
- 2. Develop Shield Rebuild and AFC Scope-of-Work
- 3. Bid Shield Rebuild and AFC
- 4. Award Contracts
- 5. Complete Work
- 6. Compatibility

Install Equipment

1 - Shield Evaluation

- Identified three potential vendors
- Each vendor was provided two shields
- Evaluation scope-of-work:
 - Perform Visual Inspection and Functionality Test
 - Clean, Strip, and Sandblast all Structures
 - Fully inspect all structures and welds
 - Fully inspect all leg pockets
 - Inspect all pins and bores
 - Provide report including:
 - Description of findings
 - Recommendations for rebuild

1 - Shield Evaluation

Evaluation Findings:

- Structurally in good condition
- Base rear-bridge cracking
- Pin and bore wear

Recommendations:

- Replace hosing and valves
- Repair/replace base rear-bridge
- Replace pins and recover bores

Additional Items:

- Lamniscate Modification (Fill holes and provide hose hangers)
- Base Lift Repair (Add stops to prevent bolt fatigue)

1 - Shield Evaluation

Key Process and Win-Win Solution

- Provided Sufco with accurate and reliable information
 - Comprehensive rebuild scope-of-work
 - Avoid unexpected surprises/change-orders
- Provided the vendor with an opportunity to become familiar with the shield
 - Reduced uncertainty during bid process
 - Confident and competitive bids

2 – Scope-of-Work

Shield Rebuild – Standard Specifications

- Clean, strip, and sandblast all structures
- Inspect all structures and welds (highlight paint, dye penetrant, and mag particle)
- Gouge and weld cracks, correct misalignment issues, and replace blocks and stops
- > Test all shield cylinders and rebuild to OEM specifications, as-needed
- Install all new valve banks, control units, hosing, and cables
- Replace all shield pins and recover bores to OEM tolerances
- Reassemble shield
- Paint all structures with one coat primer and one coat white paint

2 – Scope-of-Work

Shield Rebuild – Unique Specifications

Structural:

- Install 8-inch canopy tip extension
- Provide new relay bar and DA ram to accommodate 1-meter web
- Replace base rear-bridge
- Plug access holes in lemniscate links and provide hose hangers
- Provide base lift support blocks
- Provide Loctite leg pocket foam protectant

Safety:

- Provide and install two water-curtain spray blocks recessed in canopy
- Install new anti-skid surface plate on shield toes with pinned connection
- Install fully-integrated multi-color lighting package

3 - 4 – Bid and Award Contract

- Bids were requested from three vendors
- The Shield Rebuild contract was awarded

Angled faces of hydraulic ports ensure that the inter-support hoses are steered away from the legs in lower part of working range

2 - 3 – Scope-of-Work and Bid

- The initial Scope-of-Work included 1142 mm AFC, BSL, crusher, power-units, and drives
- Through the bid process, Sufco identified that the incremental cost of purchasing new BSL, crusher, and power units did not make good financial sense
- Sufco elected to reuse a portion of the existing LW equipment:
 - CAT 65 Series Headgate and Tailgate CST power units
 - > 1650 HP Motors
 - Crusher
 - ≻ BSL

4 – Award Contract

- The Scope-of-Work was changed, to reflect the equipment that would be reused, and bids were requested from three vendors
- The AFC contract was awarded

6 - Compatibility

6 - Compatability

7 – Install Equipment

Summary

The Challenge: How to *economically* maintain coal quality and current production levels, with lower seam conditions

The Solution:

- Rebuilt 157 1.75-meter Joy longwall shields
 - Increased web-depth from 36 inches to 1 meter
- Purchased two new AFC panline with headgate and tailgate drives
 - Utilized existing BSL, crusher, and power units
- Entered LCM agreement with Joy on two rebuilt shearers

We feel this is a great example of how transforming and repurposing equipment can help maintain profitability during strenuous times

Thank You!

JOYGLOBAL

Any Questions?

