Degasification & Ventilation of Super-wide Longwall Panels in The Pittsburgh Coal Seam

Pramod Thakur

WORLD ENERGY RESOURCES

&

CONSUMPTION

Fuel Type	Reserves (ZJ)	Annual Consumption EJ/y
Coal	290	120
Natural Gas	15.7	110
Oil	18.4	180
Nuclear	2 – 17	30*
Hydro	NA	30
All Others	Uncertain	4

 $E = 10^{18}$ $Z = 10^{21}$

*Reprocessing not considered

THE PITTSBURGH No.8 COAL SEAM

Total Gas In Place 7Tcf; 6,000 miles^{2,} 40 Btons Contour Line In Bcf/Section (2 bcf /Section Interval)

COMPANY	AL	CO	IL	PA	UT	WV	ОН	OTHER	TOTAL
Murray Energy			6		1	6	2		15
Consol Energy				5				1	6
Arch Coal		1				2			3
Walter Energy	3								3
Others	2	3		3	2	5		5	20
Total	5	4	6	8	3	13	2	6	47

SAFEST LOWEST COST MOST EFFICIENT RECOVERY

ADVANTAGES OF SUPER WIDE LONGWALLS

- Improved longwall / development coal ratio
- Improved productivity and reduced cost/ton
- Fewer longwall moves Improved safety
- More complete recovery of reserves
- Wider panels allow more time for gate development

DISADVANTAGES OF SUPER WIDE LONGWALLS

- Adequate Ventilation air at tail difficult to maintain
- Pre-mining degasification needed
- Increased gob emissions and floor gas issues
- Hidden geologic anomalies; Faults, washouts, reduced seam height

GASSINESS OF COAL

CATEGORY	GAS CONTENT (ft ³ /t)	DEPTH (ft)
MILDLY GASSY	< 100	<600
MODERATELY GASSY	100 - 300	600 - 1500
HIGHLY GASSY	300 – 700	1500 - 3000

Central core of Pittsburgh seam is moderately gassy:

Outer rim is mildly gassy

ALL COAL SEAMS ARE GASSY AND NEED SOME DEGASIFICATION*

CATEGORY	PRE-MINING	POST MINING
MILDLY GASSY	NONE REQUIRED	2 GOB WELLS PER PANEL
MODERATELY GASSY	IN-MINE HORIZONTAL DRILLING	5 – 6 GOB WELLS PER PANEL
HIGHLY GASSY (750' X 10,000')	VERTICAL DRILLING WITH HYDROFRACING IN-MINE DRILLING	20 – 40 GOB WELLS PER PANEL

* Assume the face will mine 400 – 500 ft/week

PRE-MINING DEGASIFICATION

- Horizontal Drilling from Surface
- In-mine Horizontal Drilling
- Shallow Coal: High Permeability

TYPICAL IN-MINE DRILLING PATTERNS

TYPICAL IN-MINE DRILLING PATTERNS

- Nearly 50% of all in-situ gas can be drained in 6 – 18 months
- Low diffusivity of coal
- Takes 1000 days to release 65% of in-situ gas

HORIZONTAL DRILL RIG

TENDER UNIT

DOWN HOLE SURVEYING TOOL

INSTRUMENT

READ-OUT BOX

POST-MINING DEGASIFICATION

- Vertical Gob Wells
- Cross-measure Boreholes

VERTICAL EXTENT OF GAS EMISSION SPACE

SECTION VIEW OF A TYPICAL GOB WELL

POST MINING DEGASIFICATION

- 55 60% OF GOB GAS CAN BE CAPTURED
- TYPICAL LONGWALL MAKES 8MCFD OF METHANE
- BLEEDER AIR MUST HANDLE 3.2 4.4 MCFD
- ASSUMING BLEEDERS KEPT BELOW 1.5%
 VENTILATION AIR NEEDED: 150,000 200,000 CFM

GAS EMISSIONS ON THE LONGWALL FACE DEPENDS ON

- Gas content of de-gassed coal
- Rate of mining (70ft/day)

CRITERIA FOR OPTIMUM FACE LENGTH (PANEL WIDTH)

- Total gas flow at the tailgate
- Ventilation air at the tailgate
- CH4 concentration must be below 1% (0.8%)

GAS LAYERING INDEX

• GAS LAYERING NUMBER, GLN:

$$GLN = \frac{6V}{(Q/D)1/3} \ge 5$$

minimum ventilation = $V \cdot Area$

ASSUME: Q= 300cfm; D = 10ft

Ventilation Air Needed = 39,000cfm

MODERATELY GASSY COAL SEAMS

V

OPTIMUM WIDTH OF FACE IN PITTSBURGH SEAM

GASSINESS	OPTIMUM LENGTH OF FACE (ft)
Highly Gassy	700 - 750
Moderately Gassy	1250 - 1320
Mildly Gassy	1,500 +