Intelligent Proximity Detection Technology for Underground Coal Mines

Joseph DuCarme
Mechanical Engineer
Electrical and Mechanical Systems Safety
Office of Mine Safety and Health Research

Longwall USA
June 12, 2013
Pittsburgh, PA
The mission of the Office of Mine Safety and Health Research (OMSHR) is to **eliminate mining fatalities, injuries, and illnesses through research and prevention.**
OMSHR Organization

Office of Mine Safety and Health Research
improving the health and safety of mine workers

Division of Mining Research Operations

- Hearing Loss Prevention
- Human Factors
- Ground Control
- Fires and Explosions
- Electrical and Mechanical Systems Safety

Division of Mining Science and Technology

- Health Communications, Surveillance and Research Support
- Dust Control, Ventilation and Toxic Substances

Electrical & Mechanical Systems Safety Branch

Current Research Activities

• Development of an intelligent Proximity Detection (iPD) system for Continuous Mining Machines

• Intelligent Lock out/Tag out (iLOTO)

• Battery Safety

• Mine communication and tracking
Coal Mining Occupational Fatalities by Accident Classification

Data source: MSHA 2008
Excludes office workers
Injuries/Fatalities Proximity systems may prevent

- 37 crushing/pinning fatalities involving continuous mining machines (CMM) since 1984
 - 2/13/2013: A miner was pinned between the tail of the CMM and the rib
- 12 crushing/pinning fatalities involving shuttle cars since 1995
- Typical CMM pivot rate can exceed 6 fps at head and tail
Proximity Detection Systems: engineering controls solution

- Underground proximity systems detect the presence of personnel nearby using electromagnetic technology
- Provides warnings and shut down of the equipment
- MSHA plans to publish a final rule in 2013 that would require proximity detection systems on all continuous mining machines except full-face machines. (DOL Unified Agenda, RIN 1219-AB65)
OMSHR Research Efforts in proximity detection

- Hazardous Area Signaling And Ranging Device (HASARD) concept proposed by NIOSH researchers and conducted tests in the late 1990s
 - Formal development started in 1998
 - NIOSH awarded patents in 1999 (Patents 5,939,986 & 6,810,35)

- Escapability research with computer simulations
- CMM Operator positioning and visual cues
- NIOSH intelligent proximity detection technology development including posture ID and Visual Warning
Escapability Studies

- Motion capture data was recorded using experienced miners
 - 3 postures
 - 3 facing directions
 - 8 escape directions
Escapability Studies

- The motion data was fed into a simulation that included a digital human model and a moving continuous mining machine.
- Results showed that a position farther than 3 feet from a moving machine could significantly reduce the likelihood of an operator being struck by the CM.
Work Position and Visual Cues

Continuous mining machine operators were interviewed about:

- Work positions
- Work postures
- Visual attention locations

Conclusions:

- Operators work from a variety of positions and postures around the machine
- All areas around the machine need to be protected
- Some visual cues may require the operator to be very close to the machine
Electromagnetic Proximity Detection

- Magnetic fields generated by copper wound ferrite core
Current Proximity Detection Technology

- Various generators are used to provide desired coverage.
- System does not know where the person is, only whether they are in a zone.
Electromagnetic Proximity Detection

Ferrite-Cored Magnetic Field Generator

Increasing Magnetic Flux Density

Personal Alarm Device (PAD)

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
The NIOSH intelligent proximity detection system does not disable all machine motions.

It uses triangulation to determine an operator’s position, not just their presence.

Instead, it makes decisions based on operator position and only disables those machine motions that could cause harm.

Safe machine motion is allowed to continue uninterrupted.
NIOSH Intelligent Proximity Detection

• The intelligent system allows the operators freedom to select where they will stand without disabling all machine motion
 • The operator can select a position that provides best protection from other hazards such as unsupported roof and ribs
 • The operator will be able to have better visibility allowing for safer operation of the machine
 • Operator frustration will be minimized – operator acceptance is critical to the success of any safety device
NIOSH development of Intelligent Proximity Detection

- Installed on a Joy 14CM continuous mining machine at the OMSHR
- Uses commercially available proximity detection hardware
- Utilizes NIOSH-developed technology and software
Machine Control Interface: Intelligent Proximity Detection

Remote Control
Operator input

Receiver

Relays

Actuator Controls
- Left track forward
- Left track reverse
- Right track forward
- Right track reverse
- Conveyor left
- Conveyor right

... 17 functions in total

Onboard Controller

Proximity Data

Relay Controls

17 functions in total
Machine Control Interface: Intelligent Proximity Detection

Remote Control Receiver

Operator input

Relays

Actuator Controls

Left track forward
Left track reverse
Right track forward
Right track reverse
Conveyor left
Conveyor right

17 functions in total

Machine Control Interface:
Intelligent Proximity Detection

Remote Control
Operator input

Receiver

Relays

Actuator Controls

Left track forward
Left track reverse
Right track forward
Right track reverse
Conveyor left
Conveyor right

17 functions in total

Proximity Data

Onboard Controller

Relay Controls

Proximity Data

Onboard Controller

Relay Controls

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Real-Time Position Tracking

By mathematically modeling the magnetic fields and applying triangulation techniques using multiple generators, the operator’s position relative to the machine can be determined.
Dynamic Programmable Safety Zones
Intelligent Proximity Detection

Example of operation
NIOSH Current Research

- Human subjects tests to quantify safety and performance
- Integration of Visual Warning System
- Adding posture ID capability
Human Subjects Tests: Simulated mining experiments

- Three modes of operation
 - No Proximity
 - Standard Proximity (+12%)
 - Intelligent Proximity (+2%)
Visual Warning System

- Indicates machine motions
- Provides feedback to operator when they are detected in zone AND commanding unsafe machine motion
- Expected to improve operator acceptance of proximity detection systems
Posture Identification

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Posture Identification

Motion capture of human subjects is used in digital human analysis
Posture Identification

Walking/
Standing

Sitting,
legs bent

Sitting,
legs extended

Kneeling,
both knees

Kneeling,
one knee

Lying
down
Summary

- Proximity systems can prevent striking and pinning accidents
- Pioneered with HASARD (73 khz)
- Studies developed the 3 foot recommendations
- Developed maps of fields and triangulation techniques
- Future work will optimize iPD technology
 - Prove system performance with Human subject testing
 - VWS will provide operator feedback
 - Posture ID will improve system performance and enhance safety
For more information
Booth 336

National Institute for Occupational Safety and Health

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Presented by: Joseph DuCarme
Mechanical Engineer
Electrical and Mechanical Systems Safety Branch
Office of Mine Safety and Health Research
Joseph.Ducarme@cdc.hhs.gov
(412) 386-6728

The Office of Mine Safety and Health Research is a division of the National Institute for Occupational Safety and Health (NIOSH)
www.cdc.gov/niosh/mining

NIOSH is a division of the Centers for Disease Control and Prevention within the Department of Health and Human Services www.hhs.gov

Disclaimer: The findings and conclusions in this presentation are those of the authors and do not necessarily represent the views of NIOSH. Mention of company names or products does not constitute endorsement by the Centers for Disease Control and Prevention.